973-729-7971

Scott Process

Equipment Corp

News

Archive for the ‘Plastics / Polymers’ Category

Continuous Processors Mix Fast-Reacting Materials Quickly

Posted on: July 15th, 2020

Chemical Engineering |

 

Readco’s Continuous Processors (photo) feature a proprietary design that ensures the fast-reacting materials used to process rigid polymeric foams are mixed, gelled and reacted entirely within the sealed reactor barrel before they begin to cure. Allowing foam formation and curing to occur entirely downstream, the Continuous Processors eliminate the risk of premature curing inside the barrel, along with its requisite, labor-intensive cleaning and safety concerns. Developed for producing foams, such as polyurethane, polystyrene, polyethylene and other materials that cure instantaneously, the Continuous Processors strategically introduce isocyanates, blowing agents and other reactants at key points in the process to efficiently produce a uniform, homogeneous dispersion of materials within a tight residence time. Targeted specifications for strength, cell morphology, thermal conductivity and other properties are consistently achieved.


Scott Process, Your Engineering and Process Equipment Resource, offers a robust product line; mixers, pumps, sensors, controllers, and heat transfer equipment, proudly representing premier manufacturers like Readco.  Engineers first, with decades of experience, the Scott4U team is focused on finding the right process equipment or integrated system for your unique application.  Contact us to schedule a call, video conference, onsite visit, or equipment trial.

 

Continuous Processors Allow Safe Operation While Empty

Posted on: May 7th, 2020

Readco’s Continuous Processors feature a design that allow safe operation while running on empty.

(Powder & Bulk Solids  — 4/30/2020)

These continuous processors feature a proprietary power transmission design and bearing configuration that allow safe operation while running on empty.

An upgrade versus extruders that must rely on the material to guard against metal to metal contact with the barrel, the continuous processors automatically prevent the mixing elements from contacting the barrel and eliminate risk of contamination from metal to metal contact to allow safe startup without any material in the process. By loading the recipe, raising the barrel temperature, and verifying the system settings while running empty, the continuous processor saves on both material and energy at every startup.

When shutting down for cleaning or maintenance, the continuous processors may be run on empty to allow the designed-in, self-wiping action of the mixing elements to automatically purge approximately 95% of the material from inside the mixing chamber. This advantage minimizes the need for chemical cleaning agents, offering cost savings and environmental protections in systems requiring solvents for cleaning.

Ideal for food, chemical, plastics, pharmaceutical, and other processors concerned about speeding production and reducing costs, the continuous processors are custom engineered for each installation to discharge a uniform, homogeneous end product that meets a variety of targeted specifications. The systems are designed based on product testing conducted on full-size equipment with customer formulations in the company’s on-site testing laboratory.

COVID-19 Impact on Manufacturing

Posted on: March 20th, 2020

 

“manufacturers are grappling with disruptions to
their businesses due to the COVID-19 outbreak”

NAM Pres. and CEO J Timmons

Committed to being part of the solution every step of the way to protect the health and well-being
of our communities and country, manufacturers play a Critical Role in the COVID 19 Response.

Scott Process recognizes during these difficult times,
our customers need us more than ever.

As you confront fluctuations in supply and demand and changes in production
and operations, rest assure, Scott4U is available via email, phone, or video conference.
We can efficiently procure critical spare parts now and help avoid extended lead times in Q2-Q4.

“Caution is appropriate. Preparedness is appropriate. Panic is not.”

(U.S. Surgeon General Dr. Jerome Adams, commenting on the corona-virus outbreak)

Scott4U – Your Engineering and Process Equipment Resource

*********************************************

Together, we are facing a truly unprecedented situation. The global corona-virus pandemic is affecting all of our families, our businesses, our communities, and our way of life. First and foremost, our hearts go out to anyone who’s been impacted by the virus, either directly or indirectly and grateful to those who work tirelessly to care for people in need.

CAUTION

Scott Process is taking all necessary precautions; Scott4U team members work remotely, and are adhering to CDC guidelines, while assisting our customers overcome the myriad of challenges caused by COVID-19.

CHALLENGES – COVID-19’s impact on your company

Businesses are confronting significant and unique challenges including:

  • Caring for employees; a company’s most valuable resource
  • Supply chain disruption
  • Fluctuation in demand
  • Ramping up manufacturing capacity as needed
  • Shifting production
  • Longer lead times
  • Rapidly changing regulations and restrictions
  • Maintaining food safety and product integrity

PREPARE – short-term measures and long-term plans

Preparedness is key and Scott4U is here to help you.

  • Scott4U is open for business – let us help keep your labs, plants and production facilities up and running
  • Meeting our commitments to deliver quality, reliable products that are essential to your success
  • Sourcing Alternative Solutions — the Scott4U sales team is focused on finding the right process equipment or an integrated system for each unique application.
  • Engineers first, with decades of experience ensures our knowledge of equipment and the processing industry and the ability to suggest alternative solutions when needed
  • Procuring critical spare parts
  • Fast turn-around on Quotes and Order Processing
  • Quick delivery on critical lab or process equipment
  • Competitive pricing
  • Support commissioning, installation, and field service in areas where travel is still permitted and to the extent that our employees, customers and partners remain safe.
  • Staying connected – utilizing technology to allow for additional virtual capabilities to keep our team members safe and connected to customers.
  • Forecasting future needs of spare parts to avoid extended lead time in Q3 and Q4

If you need immediate help securing parts or equipment for your facility, please contact a Scott4U engineer via email: Sales@Scott4U.com or phone: (973) 729-7971 x 101.

In this rapidly changing environment Scott4U is here to help our neighbors and customers.

***
About Scott Process

Since 1989, Scott Process Equipment has focused on helping customers in the Bio-Pharm, Pharmaceutical, Chemical, Food & Beverage, Industrial, Personal Care Products, Cosmetics, Plastics and Polymers industry solve design problems. Scott Process Equipment Corp offers a robust product line, proudly representing pump, mixer, homogenizer, powder blender, sensor, controller, scale, valve, filling system, polymer test equipment, strainer, and heat transfer equipment manufacturers.

Engineers first, the sales team is focused on finding the right process equipment or an integrated system for each unique application. Decades of experience ensures their knowledge of equipment and the processing industry.

Honest, straight-forward and service-oriented professionals committed to their customers, Scott Process is Your Engineering and Process Equipment Resource.

About NAM

The National Association of Manufacturers is the largest manufacturing association in the United States, representing small and large manufacturers in every industrial sector and in all 50 states. Manufacturing employs more than 12.8 million men and women, contributes $2.37 trillion to the U.S. economy annually and has the largest economic multiplier of any major sector and accounts for 63% of private-sector research and development.

Viscosity of Xanthan Gum at Various Concentrations Video

Posted on: January 24th, 2020

VIEW VIDEOS

Viscosity of Xanthan Gum at various concentrations – The first video shows the viscosity and flow characteristics of correctly hydrated Xanthan gum solutions at a range of viscosities up to 6%. All samples were dispersed and hydrated using a Silverson High Shear mixer. A food grade Xanthan gum was used but it should be noted that results can vary widely according to the brand and grade of gum used. The mixing system will also have an effect on the final viscosity obtained as incorrect dispersion and hydration can cause agglomerates in the mix which will reduce the yield of thickening effect. The example here illustrates the viscosity and flow characteristics that can be expected with maximised yield when a solution is prepared using a Silverson mixer.

The Silverson Viscosity Comparison Guide – The 2nd video is a simple guide to the different viscosity (thickness) of everyday products. This guide is useful for gauging the viscosity of the product you are mixing, all products shown in this video can be processed using a Silverson mixer.

 

Measuring Die Swell Using a Capillary Rheometer

Posted on: May 30th, 2019

Azadeh Farahanchi, Rheological Scientist, Ph.D

Dynisco Polymer Evaluation Blog

Die swell has been used as a qualitative measure of polymer melt elasticity for quality control purposes in plastics industry. Die swell also can be used for analysis of extrudate smoothness in an extrusion process.

Die swell is expansion of extrudate after exiting the die. It happens as a result of the molecular orientation that is generated by the flow in the die (with the greatest extension occurring near the wall) and recoiling after exiting the die (contracting in the flow direction and expanding in directions perpendicular to the flow).  In other words, this phenomenon is produced by plastic materials memory. As the extrudate exits the die, it tries to return to its initial molecular coil shape.

Dynisco LCR capillary rheometer is able to measure the diameter of the extrudates using a CCD element detection and laser beam. This accessory element has the following specification:  light source of 800 nm laser, resolution of 2.75 µm, measuring range of 0.13-23 mm, response time of 1.4 ms, and accuracy of +/- 0.003 mm.

 

(more…)

Rheological Data can Help to have a Better Metal Injection Molding Process

Posted on: March 29th, 2019

Azadeh Farahanchi, Rheological Scientist, Ph.D

Dynisco Polymer Evaluation Blog

How Rheological Data from a Capillary Rheometer Can Help to Have a Better Metal Injection Molding (MIM) Process?

Metal injection molding (MIM) is an advanced metalworking process to produce parts with complex shapes and high tolerances from a mixture of polymeric binder and metal particles/powders at specific volume ratios (feedstock). The flexibility and mass production of injection molding process makes it to be a great replacement to the traditional metallurgy process and therefore, MIM has been growingly performed in industry for large-number production of metal parts.

One of the key factors in any MIM process is the flow behavior of the feedstock during filling of of the mold. In order to have a defect free molding process (without jetting, short shot, sink mark, crack, etc.) with desired mechanical strength (tensile, flexural, failure stress, etc.) in the final products, understanding of the rheological properties of the binder and feedstock is necessary. The rheological analysis also helps to have defect free debinding and sintering procedures which are the final steps in a MIM process and gives the required mechanical strength to the final products.

In terms of rheological properties, there are three main factors which have significant effect on a MIM process namely, viscosity at the processing shear rate, thermal sensitivity, and shear thinning behavior of the feedstock. All these factors can be analyzed using a capillary rheometer. Since this rheological characterization method provide a wide range of shear rate, it is the best approach to study feedstock melt behavior in an injection molding process.

(more…)

arrow_upward